Migration and Alters Remodeling in the Injured Rat Carotid Artery Matrix Metalloproteinase-9 Overexpression Enhances Vascular Smooth Muscle Cell
نویسندگان
چکیده
Matrix metalloproteinase-9 (MMP-9) has been implicated in the pathogenesis of atherosclerosis as well as intimal hyperplasia after vascular injury. We used Fischer rat smooth muscle cells (SMCs) overexpressing MMP-9 to determine the role of MMP-9 in migration and proliferation as well as in vessel remodeling after balloon denudation. Fischer rat SMCs were stably transfected with a cDNA for rat MMP-9 under the control of a tetracycline-regulatable promoter. In this system, MMP-9 was overexpressed in the absence, but not in the presence, of tetracycline. In vitro SMC migration was determined using a collagen invasion assay as well as a Boyden chamber assay. In vivo migration was determined by measuring the invasion into the medial and intimal layers of transduced SMCs seeded on the outside of the artery. Transduced SMCs were also seeded on the luminal surface, and the effect of local MMP-9 overexpression on vascular structure was measured morphometrically at intervals up to 28 days. MMP-9 overexpression enhanced SMC migration in both the collagen invasion assay and Boyden chamber in vitro, increased SMC migration into an arterial matrix in vivo, and altered vessel remodeling by increasing the vessel circumference, thinning the vessel wall and decreasing intimal matrix content. These results demonstrate that MMP-9 enhances vascular SMC migration in vitro and in vivo and alters postinjury vascular remodeling. (Circ Res. 1999;85:1179-1185.)
منابع مشابه
Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery.
Matrix metalloproteinase-9 (MMP-9) has been implicated in the pathogenesis of atherosclerosis as well as intimal hyperplasia after vascular injury. We used Fischer rat smooth muscle cells (SMCs) overexpressing MMP-9 to determine the role of MMP-9 in migration and proliferation as well as in vessel remodeling after balloon denudation. Fischer rat SMCs were stably transfected with a cDNA for rat ...
متن کاملSIRT1 acts as a modulator of neointima formation following vascular injury in mice.
RATIONALE Vascular smooth muscle cell (VSMC) proliferation and migration are crucial events involved in the pathophysiology of vascular diseases. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), has been reported to have the function of antiatherosclerosis, but its role in neointima formation remains unknown. OBJECTIVE The present study was designed to investigate the role of SIRT1 ...
متن کاملIncreased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries.
BACKGROUND Remodeling of the injured vascular wall is dependent on the action of several extracellular proteases. Previous studies have shown that expression of matrix metalloproteinases (MMP-2 and MMP-9) is upregulated after vascular injury and that MMP-2 is required for the migration of cultured vascular smooth muscle cells across complex extracellular matrix barriers. The present study exami...
متن کاملSmooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat.
We have characterized matrix metalloproteinase expression in the rat carotid artery after two forms of arterial injury, balloon catheter denudation and nylon filament denudation. Gelatinolytic enzymes with molecular masses of 70 and 62 kD were produced constitutively in the rat carotid. Production of an 88-kD gelatinase was induced after balloon catheter injury, and proteinase production contin...
متن کاملADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries.
The migration of vascular smooth muscle cells (VSMCs) plays an essential role during the development of atherosclerosis and restenosis. Extensive studies have implicated the importance of extracellular matrix (ECM)-degrading proteinases in VSMC migration. A recently described family of proteinases, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTs), is capable of degrading ...
متن کامل